经典诗歌

    *** 次数:1408996 已用完 请联系开发者*** AlphaGo:人类棋手被吊打而不自知


    时间:2022-07-19  来源:  作者:[db:作者]  浏览次数:



    万众瞩目的人机大战已经完成两回合,机器超出大多数人的想象获胜了,而且是大胜,棋坛震动。另一方面,我们又听到这样的声音:“一开始是李世乭占优,中盘被大逆转”,“是李世乭几次失误才输的”,“机器这一手业余五段水平,哈哈”。   这类观点背后的一个漏洞是,这些评价都基于人类棋手百年来积累下来的共识经验来判断。另一种细想极恐的解释是:机器一开始就占优而人类棋手以之前的经验并没意识到,待到醒悟时已经来不及了。机器这一步棋厉害到人类棋手从来没想到过。   赛后从Google传来的消息已经证明了后一种观点:至始至终白棋都在占优!也就是说以机器的视角看:“人类呀,这盘棋不是啥逆转,我一开始就吃定了你的。你以为我的昏招只是你!没!看!懂!”   你没看懂!我相信确实发生了这样的事情,人不仅是没有预料到机器的下棋能力,更是机器已经落子了我们还没看懂为啥这么下,反而评价不高,这是多么大的差距!现在到了需要思考人和机器谁更懂棋而不只是谁更会下棋的时候了。   AlphaGo已经表现出十二段的水准,而我们还在遮羞“逆转”、“失误”以及“嘲笑”,这就是被吊打而不自知。   无招胜有招的宇宙流   机器和人下棋有什么区别呢?人类下围棋是靠的“搜索”+“计算”+“棋感”。传统意义上,计算机没有棋感只能靠搜索,这对于围棋的海量变化和可能性完全不适用,也是我们之前不看好机器下围棋的终极理由。而这个棋感配合一定的计算,就变成了对局势判断的抽象概念,比如“厚薄”、“虚实”、风格“稳健或强硬”、策略“缠绕攻击、弃子整形”以及每步棋的招式“跳、长、靠”等等等。这些概念的引入:当前棋局->局势抽象判断->走棋招式抽象选择->局势抽象验证->落子,大大减少了搜索量。谈论这些抽象概念,就像是武功开始比试流派和招式,成为这项智力游戏的乐趣所在。   因为深度学习,世道变了。深度学习最大的魅力就是抽象能力,通过对3000万局人类对弈数据的学习,机器建立了一套抽象局势和落子招式的棋感。   既然机器掌握了棋感,一个未被大家深入讨论的问题是:机器会把局势、棋形抽象成多少类呢?会把落子策略和招式抽象成多少类呢?   答案是0!   这就是机器与人在抽象时最大的不同。当我们抽象出多个概念来,每一种概念便是一种简化,一方面忽略了全局信息,一方面也排斥了其他概念,也是在丢失信息。   打一个比方,我们都知道光的波粒二象性,光既是波又是粒子。当我们把光描述成波,就会忽略了粒子特性,如果把光描述成粒子,就会忽略波的特性。但是如果同时表达这两个属性,对人的理解就是很大的挑战了。   而深度学习下的概念抽象,Value Network同时既保留了全局信息,又兼顾了局部信息,直接对应到局势评分。Policy Network对应的走棋的抽象,兼顾了所有的招式并融会贯通,直接对应到落子的概率。   这便是小说里写的无招胜有招,真实地在围棋里再现。   以前我们赢机器,是因为我们有“抽象概念”而机器没有。现在我们输给机器,也是因为我们太有“抽象概念”,太细碎失去了整体,机器建立了大统一的抽象概念。   更多强调,这种无招胜有招,并不只是“见招拆招”,而是在时空双重维度上的“终极大招”。之前我们有质疑机器没有“大局观”,在深度学习框架下,机器不仅是有大局观,而是全局观,包含了全部细节的全局。再有,这个全局观不只是棋盘空间上的全局,而是每一步局势的判断以及落子的选择都是指向最终赢棋的概率提升,这是时间维度的全局观。   这种全局观下,棋感与搜索的交织融合,每一步搜索中包含棋感、每一步棋感后都进行搜索,便打造出完全超越人理解的走棋逻辑来。   有了这种超越人的时空全局观,机器就会走出一些人没法解读的匪夷所思的招式来,这些招式要么超越我们的定式,要么在招式下计算更精准,要么两者兼有。   这便是无招胜有招的宇宙流。   Google心机婊的棋外棋   Google这次人机大战获得了空前的关注,一方面是这个事情本身足够吸引眼球,号称人类棋类智慧的最后一块堡垒被攻破,具有足够的

    本文来自华纳娱乐文学网 转载请注明

    上一篇 下一篇


    • 用户名:
    • 密码:
  • 验证码:
  • 匿名发表

      友情链接